Quaternäre E-Phase TiCuSi_{1-x}Ge_x

Von

J. Nickl und H. Sprenger

Institut für Anorganische Chemie der Universität München, Forschungslaboratorium für Festkörperchemie, München 8, Anzinger Straße 1

(Eingegangen am 6. November 1967)

Vor kurzem wurde die quaternäre E-Phase ${\rm Ti}_{1-x}{\rm Zr}_x{\rm CuSi}$ bekannt¹. Es wurde nun versucht, ob Silicium durch das E-Phasen-bildende Element Germanium substituiert werden kann. Die Versuche zeigten, daß eine Substitution möglich ist und führten zu Einkristallen der Formel ${\rm TiCuSi}_{1-x}{\rm Ge}_x$ (0 $\leq x \leq$ 1), die die Struktur der E-Phasen ${\rm TiCuSi}^2$ und ${\rm TiCuGe}^3$ mit der Raumgruppe ${\rm D}_{\rm 2h}^{16}={\rm Pbnm}$ besitzen.

Bei Einkristallen mit Zusammensetzung Ti $CuSi_{0,4}Ge_{0,6}$ wurden die Gitterkonstanten durch Guinieraufnahmen bestimmt:

$$a_0 = 7.214 \text{ Å}, \quad b_0 = 6.241 \text{ Å}, \quad c_0 = 3.779 \text{ Å}.$$

Diese Werte liegen zwischen den Parametern von TiCuSi und TiCuGe. Versuche, in der E-Phase TiCuSi Kupfer teilweise durch Nickel zu ersetzen, gelangen bisher nicht. Die Substitutionsversuche führten stets zu einem Gemisch von Ausscheidungen, die aus der E-Phase TiNiSi und der kubischen G-Phase Ti₆Ni₁₆Si₇⁴ bestanden.

¹ J. Nickl und H. Sprenger, Naturwiss. **54**, 490 (1967).

² J. Nickl und H. Sprenger, Naturwiss. **54**, 18 (1967).

³ J. Nickl und H. Sprenger, Naturwiss. **54**, 515 (1967).

¹ F. X. Spiegel, D. Bardos und P. A. Beck, Trans. Met. Soc. AIME 227, 575 (1963).